From Plastic Waste to Electronic Devices

Typography

A new study conducted by researchers from the University of Delaware and Argonne National Laboratory describes a chemical reaction that can convert Styrofoam into a high-value conducting polymer known as PEDOT:PSS. 

A new study conducted by researchers from the University of Delaware and Argonne National Laboratory describes a chemical reaction that can convert Styrofoam into a high-value conducting polymer known as PEDOT:PSS. Published in JACS Au, the study also demonstrates how upgraded plastic waste can be successfully incorporated into functional electronic devices, including silicon-based hybrid solar cells and organic electrochemical transistors.

The research group of corresponding author Laure Kayser, assistant professor in the Department of Materials Science and Engineering in UD’s College of Engineering with a joint appointment in the Department of Chemistry and Biochemistry in the College of Arts and Sciences, regularly works with PEDOT:PSS, a polymer that has both electronic and ionic conductivity, and was interested in finding ways to synthesize this material from plastic waste.

After connecting with Argonne chemist David Kaphan during an event hosted by UD’s research office, the research teams at UD and Argonne began evaluating the hypothesis that PEDOT:PSS could be made by sulfonating polystyrene, a synthetic plastic found in many types of disposable containers and packing materials.

Read more at University of Delaware

Image: A new study by researchers at UD (from top left inset to far right) Laure Kayser, Chun-Yuan Lo and Kelsey Koutsoukos and David Kaphan from Argonne National Laboratory (inset bottom left) conducted a study that demonstrates how waste Styrofoam can be transformed into polymers for electronic materials. (Credit: Evan Krape / University of Delaware)