New Humidity-Driven Membrane to Remove Carbon Dioxide From the Air

Typography

A new ambient-energy-driven membrane that pumps carbon dioxide out of the air has been developed by Newcastle University researchers.

A new ambient-energy-driven membrane that pumps carbon dioxide out of the air has been developed by Newcastle University researchers.

Direct air capture was identified as one of the ‘Seven chemical separations to change the world’. This is because although carbon dioxide is the main contributor to climate change (we release ~40 billion tons into the atmosphere every year), separating carbon dioxide from air is very challenging due to its dilute concentration (~0.04%).

Professor Ian Metcalfe, Royal Academy of Engineering Chair in Emerging Technologies in the School of Engineering, Newcastle University, UK, and lead investigator states, “Dilute separation processes are the most challenging separations to perform for two key reasons. First, due to the low concentration, the kinetics (speed) of chemical reactions targeting the removal of the dilute component are very slow. Second, concentrating the dilute component requires a lot of energy.”

These are the two challenges that the Newcastle researchers (with colleagues at the Victoria University of Wellington, New Zealand, Imperial College London, UK, Oxford University, UK, Strathclyde University, UK and UCL, UK) set out to address with their new membrane process. By using naturally occurring humidity differences as a driving force for pumping carbon dioxide out of air, the team overcame the energy challenge. The presence of water also accelerated the transport of carbon dioxide through the membrane, tackling the kinetic challenge.

Read more at Newcastle University

Photo Credit: ELG21 via Pixabay