Our planet is nestled in the center of two immense, concentric doughnuts of powerful radiation: the Van Allen radiation belts, which harbor swarms of charged particles that are trapped by Earth's magnetic field. On March 17, 2015, an interplanetary shock - a shockwave created by the driving force of a coronal mass ejection, or CME, from the sun - struck Earth's magnetic field, called the magnetosphere, triggering the greatest geomagnetic storm of the preceding decade. And NASA's Van Allen Probes were there to watch the effects on the radiation belts.
One of the most common forms of space weather, a geomagnetic storm describes any event in which the magnetosphere is suddenly, temporarily disturbed. Such an event can also lead to change in the radiation belts surrounding Earth, but researchers have seldom been able to observe what happens. But on the day of the March 2015 geomagnetic storm, one of the Van Allen Probes was orbiting right through the belts, providing unprecedentedly high-resolution data from a rarely witnessed phenomenon. A paper on these observations was published in the Journal of Geophysical Research on Aug. 15, 2016.