A new University of Washington study shows that the textbook understanding of global chemical weathering — in which rocks are dissolved, washed down rivers and eventually end up on the ocean floor to begin the process again — does not depend on Earth’s temperature in the way that geologists had believed.
articles
New chemical reaction developed at UCLA could eventually yield new fuels and medications
When scientists develop the chemical formulas for new products such as fuels and medications, they often must first create molecules that haven’t previously existed.
A basic step toward creating new molecules is selectively breaking and re-forming the chemical bonds that connect the atoms that make them up. One of the chief challenges is that the bond between carbon and hydrogen atoms — the building blocks of many molecules — is exceptionally strong, so chemists often have to resort to using rare and expensive chemicals like iridium to convert it into other, more useful types of chemical bonds. Scientists refer to this process as “functionalizing” the bonds.
Solar cells more efficient thanks to new material standing on edge
Researchers from Lund University in Sweden and from Fudan University in China have successfully designed a new structural organization using the promising solar cell material perovskite. The study shows that solar cells increase in efficiency thanks to the material’s ability to self-organise by standing on edge.
The current research study deals with perovskite, a new and promising material in the context of solar cells. However, in its regular form, the material is very sensitive to moisture. It simply dissolves in contact with water, and even normal humidity deteriorates the material within hours or minutes. Now the researchers appear to have overcome that problem.
NASA Sees Powerful Storms with Advancing Monsoon in Bay of Bengal
Storms associated with the advancing monsoon in the Northern Indian Ocean's Bay of Bengal were analyzed by NASA with the GPM or Global Precipitation Measurement mission core satellite.
The GPM core observatory satellite passed over the Bay of Bengal on May 23, 2017 at 0251 UTC (May 22 at 10:51 p.m. EDT). GPM is a joint satellite mission between NASA and the Japan Aerospace Exploration Agency, JAXA.
Researchers Model Differences in East Coast Sea Level Rise
For years, scientists have been warning of a so-called “hot spot” of accelerated sea-level rise along the northeastern U.S. coast. But accurately modeling this acceleration as well as variations in sea-level rise from one region to another has proven challenging.
Now an upcoming paper in Geophysical Research Letters offers the first comprehensive model for understanding differences in sea level rise along North America’s East Coast. That model incorporates data not just from atmospheric pressure and ocean dynamics—changing currents, rising ocean temperatures and salinity all influence sea level—but also, for the first time, ice mass change in Greenland and Antarctica. The researchers say their model supports a growing consensus that sea level rise began accelerating in 1990 and that what they found will improve estimates of future sea level rise at a local level.
CAST project places new limitations on dark matter
Axions are particles whose hypothetical existence was introduced in 1977 by Roberto Peccei and Helen Quinn. The particles have been the talk of the town lately because their existence could largely explain so-called dark matter. In order to make a solid claim, researchers have been measuring the interaction between axions and photons. A team of international scientists from the project CERN Axion Solar Telescope (CAST) at the European research center CERN in Geneva, Switzerland, including Prof. Dr. Horst Fischer from the Institute of Physics at the University of Freiburg, have set strict limits to the probability that axions turn into photons. They have presented their findings in the latest issue of Nature Physics.