A mathematical model developed by Texas A&M researchers can predict temperatures within mosquito breeding grounds, which can be used to estimate populations and track vector-borne diseases.
With an impressive capability of drinking up to three times their body weight in a single blood meal, mosquitoes are formidable parasites. But to reach adulthood, mosquitoes need to be raised in environments where the temperatures are conducive to their breeding, growth and development.
In a new study in the journal Scientific Reports, Texas A&M University researchers have developed a mathematical model based on machine learning to precisely predict the local or microclimatic temperature within the breeding grounds of the Aedes albopictus mosquitoes, carriers of the chikungunya and dengue viruses. Their algorithm also reveals that even in winter, the temperature may be warm enough in certain breeding grounds to allow mosquitoes to grow and thrive.
“Our goal is to develop accurate and automated mathematical models for estimating microclimatic temperature, which can greatly facilitate a quick assessment of mosquito populations and consequently, vector-borne disease transmission,” said Madhav Erraguntla, associate professor of practice in the Wm Michael Barnes ’64 Department of Industrial and Systems Engineering.
Continue reading at Texas A&M University
Image via Texas A&M University