Using data gathered from a specially equipped jet that spent a month flying through and studying wildfire plumes, scientists have a better understanding now of how wildfire smoke impacts air quality.
Crucially, they found a mechanism for predicting the production of the pollutant ozone—which, at the ground level, can create poor breathing conditions and also harm ecosystems. Also, the team found that mixing wildfire smoke with urban pollution ramps up the production of ozone, meaning that wildfires upwind of cities are a recipe for air quality problems.
"Of course it is well known that wildfires lower air quality. But it's important to understand the chemical and physical mechanisms by which they do so that we can more effectively forecast how individual fires will impact the communities downwind of them," says Paul O. Wennberg, R. Stanton Avery Professor of Atmospheric Chemistry and Environmental Science and Engineering.
Wennberg is a corresponding author of a paper on the research that was published by Science Advances on December 8. The paper draws on data collected through the NASA/NOAA FIREX-AQ project, which spent a month flying missions out of Boise, Idaho, during the summer of 2019.
Continue reading at California Institute of Technology
Image via Cooperative Institute for Research in Environmental Sciences