New research led by Mohammad Masnadi, assistant professor of chemical and petroleum engineering at the University of Pittsburgh Swanson School of Engineering, offers a closer look at the relationship between decreasing demand for oil and a resilient, varied oil market–and the carbon footprint associated with both.
New research led by Mohammad Masnadi, assistant professor of chemical and petroleum engineering at the University of Pittsburgh Swanson School of Engineering, offers a closer look at the relationship between decreasing demand for oil and a resilient, varied oil market–and the carbon footprint associated with both. The work was published today in Nature.
Predicting the behavior of any market is a slippery thing. Energy markets are changing especially quickly, and this is most clearly seen in the oil industry. With decreasing demand during the COVID-19 pandemic and the rise of electric vehicles, the market has experienced a shock, and it probably won’t be the last.
A decreasing reliance on oil for fuel will inevitably decrease the amount of carbon released into the atmosphere throughout the fuel’s lifecycle, from extraction and refining to combustion as it’s used by consumers. However, the size of that impact varies depending on market factors that until now have not been fully modeled.
New research led by Mohammad Masnadi, assistant professor of chemical and petroleum engineering at the University of Pittsburgh Swanson School of Engineering, offers a closer look at the relationship between decreasing demand for oil and a resilient, varied oil market–and the carbon footprint associated with both. The work was published today in Nature.
Read more at University of Pittsburgh
Photo Credit: eyeonicimages via Pixabay