Porous rock containing oil and natural gas are buried so deep inside the earth that shale operators rely on complex models of the underground environment to estimate fossil fuel recovery.
Porous rock containing oil and natural gas are buried so deep inside the earth that shale operators rely on complex models of the underground environment to estimate fossil fuel recovery. These simulations are notoriously complex, requiring highly-skilled operators to run them. These factors indirectly impact the cost of shale oil production and ultimately, how much consumers pay for their fuel.
Researchers at Texas A&M University have now developed an analytical procedure that can be used in spreadsheets to predict the amount of oil and gas that can be recovered from newly drilled wells. By modeling the pattern of oil and gas flow from older wells in the same drilling field, the researchers said they can now accurately forecast the rate of oil and gas flow for newer wells, a framework that is quicker and easier to use than complicated reservoir simulations.
“In the oil and gas industry, professionals use sophisticated reservoir simulators to get a sense of how much hydrocarbons can be recovered from the layers below the Earth’s surface. These simulations are very useful but extremely time-consuming and computationally intense,” said Dr. Ruud Weijermars, professor in the Harold Vance Department of Petroleum Engineering. “We can now do the same kind of predictions as these simulations in a spreadsheet environment, which is much faster, saving a lot of time and cost for shale operators, without loss of accuracy.”
Read more at Texas A&M University
Image: A schematic of a single flow cell (left) and a series of flow cells (right). Oil and gas flow from the porous rock into the cracks and then to the wellbore. (Credit: Texas A&M University College of Engineering)