Data Mining Digs up Hidden Clues to Major California Earthquake Triggers

Typography

A powerful computational study of southern California seismic records has revealed detailed information about a plethora of previously undetected small earthquakes, giving a more precise picture about stress in the earth’s crust. 

A powerful computational study of southern California seismic records has revealed detailed information about a plethora of previously undetected small earthquakes, giving a more precise picture about stress in the earth’s crust. A new publicly available catalog of these findings will help seismologists better understand the stresses triggering the larger earthquakes that occasionally rock the region.

Tenfold increase in Southern California earthquakes detected

“It’s very difficult to unpack what triggers larger earthquakes because they are infrequent, but with this new information about a huge number of small earthquakes, we can see how stress evolves in fault systems,” said Daniel Trugman, a post-doctoral fellow at Los Alamos National Laboratory and coauthor of a paper published in the journal Science today. “This new information about triggering mechanisms and hidden foreshocks gives us a much better platform for explaining how big quakes get started,” Trugman said.

Crunching the numbers

Trugman and coauthors from the California Institute of Technology and Scripps Institution of Oceanography performed a massive data mining operation of the Southern California Seismic Network for real quakes buried in the noise. The team was able to detect, understand, and locate quakes more precisely, and they created the most comprehensive earthquake catalog to date. The work identified 1.81 million quakes—10 times more earthquakes occurring 10 times more frequently than quakes previously identified using traditional seismology methods.

Read more at DOE/Los Alamos National Laboratory

Image: A historic image of quake damage in Long Beach, California, 1933. (Credit: W.L. Huber, USGS. Public domain.)