How did Emperor Penguins survive the last ice age?

Typography

The study of how climate change has affected emperor penguins over the last 30,000 years found that only three populations may have survived during the last ice age, and that the Ross Sea in Antarctica was likely the refuge for one of these populations.

The findings, published in the journal Global Change Biology, suggest that while current climate conditions may be optimal for emperor penguins, conditions in the past were too extreme for large populations to survive.

The study of how climate change has affected emperor penguins over the last 30,000 years found that only three populations may have survived during the last ice age, and that the Ross Sea in Antarctica was likely the refuge for one of these populations.

The findings, published in the journal Global Change Biology, suggest that while current climate conditions may be optimal for emperor penguins, conditions in the past were too extreme for large populations to survive.

A team of researchers, led by scientists from the universities of Southampton, Oxford, Tasmania and the Australian Antarctic Division, and supported in Antarctica by Adventure Network International, examined the genetic diversity of modern and ancient emperor penguin populations in Antarctica to estimate how they had been changing over time.

The iconic species is famed for its adaptations to its icy world, breeding on sea ice during the Antarctic winter when temperatures regularly drop below -30 °C. However, the team discovered that conditions were probably too harsh for emperor penguins during the last ice age and that the population was roughly seven times smaller than today and split up into three refugial populations.

Gemma Clucas, a PhD student from Ocean and Earth Science at the University of Southampton and one of the lead authors of the paper, said: 'Due to there being about twice as much sea ice during the last ice age, the penguins were unable to breed in more than a few locations around Antarctica. The distances from the open ocean, where the penguins feed, to the stable sea ice, where they breed, was probably too far. The three populations that did manage to survive may have done so by breeding near to polynyas – areas of ocean that are kept free of sea ice by wind and currents.'

One of these polynyas that supported a population of emperor penguins throughout the last ice age was probably in the Ross Sea. The researchers found that emperor penguins that breed in the Ross Sea are genetically distinct from other emperor penguins around Antarctica.

Emperor Penguin colony and ice image via Shutterstock.

Read more at University of Oxford.