• MU Study Finds that Gravity, 'Mechanical Loading' are Key to Cartilage Development

    Mechanical loading, or forces that stimulate cellular growth for development, is required for creating cartilage that is then turned to bone; however, little is known about cartilage development in the absence of gravity or mechanical loads. Now, in a study led by the University of Missouri, bioengineers have determined that microgravity may inhibit cartilage formation. Findings reveal that fracture healing for astronauts in space, as well as patients on bed rest here on Earth, could be compromised in the absence of mechanical loading.

    >> Read the Full Article
  • Study Suggests Serotonin May Worsen Tinnitus

    Millions of people suffer from the constant sensation of ringing or buzzing in the ears known as tinnitus, creating constant irritation for some and severe anxiety for others. Research by scientists at OHSU shows why a common antidepressant medication may worsen the condition.

    >> Read the Full Article
  • Orange is the New Green: How Orange Peels Revived a Costa Rican Forest

    In the mid-1990s, 1,000 truckloads of orange peels and orange pulp were purposefully unloaded onto a barren pasture in a Costa Rican national park. Today, that area is covered in lush, vine-laden forest.

    >> Read the Full Article
  • How Continents Were Recycled

    Researchers from Germany and Switzerland have used computer simulations to analyse how plate tectonics have evolved on Earth over the last three billion years. They show that tectonic processes have changed in the course of the time, and demonstrate how those changes contributed to the formation and destruction of continents. The model reconstructs how present-day continents, oceans and the atmosphere may have evolved.

    >> Read the Full Article
  • Methane Hydrate is not a Smoking Gun in the Arctic Ocean

    Clathrate (hydrate) gun hypothesis stirred quite the controversy when it was posed in 2003. It stated that methane hydrates – frozen water cages containing methane gas found below the ocean floor – can melt due to increasing ocean temperatures.

    >> Read the Full Article
  • Once invincible superbug squashed by 'superteam' of antibiotics

    The recent discovery of E. coli carrying mcr-1 and ndm-5 — genes that make the bacterium immune to last-resort antibiotics — has left clinicians without an effective means of treatment for the superbug.

    But in a new study, University at Buffalo researchers have assembled a team of three antibiotics that, together, are capable of eradicating the deadly bacterium. The groundbreaking research was recently published in mBio, a journal for the American Society of Microbiology.

    >> Read the Full Article
  • How cytoplasm ''feels'' to a cell's components

    Under a microscope, a cell’s cytoplasm can resemble a tiny underwater version of New York’s Times Square: Thousands of proteins swarm through a cytoplasm’s watery environment, coming together and breaking apart like a cytoskeletal flash mob.

    Organelles such as mitochondria and lysosomes must traverse this crowded, ever-changing cytoplasmic space to deliver materials to various parts of a cell.

    Now engineers at MIT have found that these organelles and other intracellular components may experience the surrounding cytoplasm as very different environments as they travel. For instance, a cell’s nucleus may “feel” the cytoplasm as a fluid, honey-like material, while mitochondria may experience it more like toothpaste.

    >> Read the Full Article
  • Hidden river once flowed beneath Antarctic ice

    Antarctic researchers from Rice University have discovered one of nature’s supreme ironies: On Earth’s driest, coldest continent, where surface water rarely exists, flowing liquid water below the ice appears to play a pivotal role in determining the fate of Antarctic ice streams.

    The finding, which appears online this week in Nature Geoscience, follows a two-year analysis of sediment cores and precise seafloor maps covering 2,700 square miles of the western Ross Sea. As recently as 15,000 years ago, the area was covered by thick ice that later retreated hundreds of miles inland to its current location. The maps, which were created from state-of-the-art sonar data collected by the National Science Foundation research vessel Nathaniel B. Palmer, revealed how the ice retreated during a period of global warming after Earth’s last ice age. In several places, the maps show ancient water courses — not just a river system, but also the subglacial lakes that fed it.

    >> Read the Full Article
  • Hot spot at Hawaii? Not so fast

    Through analysis of volcanic tracks, Rice University geophysicists have concluded that hot spots like those that formed the Hawaiian Islands aren’t moving as fast as recently thought.

    Hot spots are areas where magma pushes up from deep Earth to form volcanoes. New results from geophysicist Richard Gordon and his team confirm that groups of hot spots around the globe can be used to determine how fast tectonic plates move.

    Gordon, lead author Chengzu Wang and co-author Tuo Zhang developed a method to analyze the relative motion of 56 hot spots grouped by tectonic plates. They concluded that the hot-spot groups move slowly enough to be used as a global reference frame for how plates move relative to the deep mantle. This confirmed the method is useful for viewing not only current plate motion but also plate motion in the geologic past.

    >> Read the Full Article
  • Genome analysis with near-complete privacy possible

    It is now possible to scour complete human genomes for the presence of disease-associated genes without revealing any genetic information not directly associated with the inquiry, say Stanford University researchers.

    This “genome cloaking” technique, devised by biologists, computer scientists and cryptographers at the university, ameliorates many concerns about genomic privacy and potential discrimination based on an individual’s genome sequence.

    >> Read the Full Article