Two-dimensional graphene consists of single layers of carbon atoms and exhibits intriguing properties. The transparent material conducts electricity and heat extremely well. It is at the same time flexible and solid. Additionally, the electrical conductivity can be continuously varied between a metal and a semiconductor by, e.g., inserting chemically bound atoms and molecules into the graphene structure – the so-called functional groups. These unique properties offer a wide range of future applications as e.g. for new developments in optoelectronics or ultrafast components in the semiconductor industry. However, a successful use of graphene in the semiconductor industry can only be achieved if properties such as the conductivity, the size and the defects of the graphene structure induced by the functional groups can already be modulated during the synthesis of graphene.

Read more ...

A new process for water filtration using carbon dioxide consumes one thousand times less energy than conventional methods, scientific research published this week has shown.

The research was led by University of Limerick’s Dr Orest Shardt together with Dr Sangwoo Shin (now at University of Hawaii, Manoa), while they were post doctoral researchers at Princeton University last year.

Read more ...

Migratory mule deer in Wyoming closely time their movements to track the spring green-up, providing evidence of an underappreciated foraging benefit of migration, according to a study by University of Wyoming and U.S. Geological Survey scientists at the Wyoming Cooperative Fish and Wildlife Research Unit.

Read more ...

Chemists designed a nickel catalyst that easily transforms petroleum feedstocks into valuable compounds like fatty acids. The process is environmentally friendly: not only it works at room temperature and atmospheric pressure, but also recycles carbon dioxide, contributing to the fight against climate change.

Fatty acids are key in several industrial processes like the manufacture of soaps, plastics –such as nylon– and dyes. Experts estimate that the global market for these compounds could reach $20 billion in the next few years. Classical synthetic methods to obtain fatty acids often require toxic and hazardous reagents like carbon monoxide and extreme conditions of pressures and temperatures. Alternative methods like the derivatization of natural products are less dangerous, but lead to complicated mixtures of products that require tedious purifications.

Read more ...

Mercury is a powerful poison. It can cause brain damage, tremors, paralysis and death.

But two researchers at the University of Ottawa’s Department of Biology have found a way to neutralize this toxic metal by pitting it against a small but mighty foe — a group of microorganisms known as purple non-sulphur bacteria.

Read more ...

A WSU research team for the first time has developed a promising way to recycle the popular carbon fiber plastics that are used in everything from modern airplanes and sporting goods to the wind energy industry.

The work, reported in Polymer Degradation and Stability, provides an efficient way to re-use the expensive carbon fiber and other materials that make up the composites.

Read more ...

More Articles ...

Subcategories