Most climate scientists agree that heavy rainfall will become even more extreme and frequent in a warmer climate. This is because warm air can hold more moisture than cold air, resulting in heavier rainfall.

However, the involved mechanisms are complex and the increase in extreme precipitation varies in space, as noted by Stephan Pfahl, climate scientist at ETH Zurich and lead author of a paper just published in the journal Nature Climate Change: “The level of atmospheric moisture is just one factor influencing the distribution and intensity of extreme precipitation. Other factors also play a key role – especially when it comes to regional variability.”

Read more ...

A study, published in Nature, has shown that laboratory tests of nitrogen oxide emissions from diesel vehicles significantly underestimate the real-world emissions by as much as 50 per cent.

The research, led by the International Council on Clean Transportation and Environmental Health Analytics, LLC., in collaboration with scientists at the University of York’s Stockholm Environment Institute (SEI); University of Colorado; and the International Institute for Applied Systems Analysis, examined 11 major vehicle markets representing more than 80% of new diesel vehicle sales in 2015. 

Read more ...

The same technology that adds fizz to soda can now be used to remove particles from dirty water. Researchers at Princeton University have found a technique for using carbon dioxide in a low-cost water treatment system that eliminates the need for costly and complex filters.

The system injects CO2 gas into a stream of water as a method of filtering out particles. The gas, which mixes with the water in a system of channels, temporarily changes the water's chemistry. The chemical changes cause the contaminating particles to move to one side of the channel depending on their electrical charge. By taking advantage of this migration, the researchers are able to split the water stream and filter out suspended particles. 

Read more ...

With the growing frequency and magnitude of toxic freshwater algal blooms becoming an increasingly worrisome public health concern, Carnegie scientists Jeff Ho and Anna Michalak, along with colleagues, have made new advances in understanding the drivers behind Lake Erie blooms and their implications for lake restoration. The work is published in two related studies.

Using data from NASA’s Landsat 5 instrument, the researchers generated new estimates of historical algal blooms in Lake Erie, more than doubling the number of years previously available for scientists to investigate, from 14 to 32. (This first study was published in Remote Sensing of Environment.) Exploring this new historical record, they discovered that decadal-scale cumulative phosphorous loading—that is the runoff that enters the waterway—helps to predict bloom size in addition to the effects from same-year phosphorus inputs. The work suggests that it may take up to a decade to reap the benefits of recently proposed nutrient loading reductions. (This second study was published in the Journal of Great Lakes Research.)

Read more ...

When asked why she loves to garden, Shirley Ross quotes the late Lois Hole, Alberta’s most beloved green thumb.

"Caring is the soul of gardening . . . We take risks and place our trust in factors beyond our control. Yet in the end, we are almost always rewarded with a beautiful harvest."

Read more ...

The report, in Genome Announcements, comes after almost seven years of research, according to Dr. Tim Devarenne, AgriLife Research biochemist and principal investigator in College Station. In addition to sequencing the genome, other genetic facts emerged that ultimately could help his team and others studying this green microalga further research toward producing algae and plants as a renewable fuel source.

"This alga is colony-forming, which means that a lot of individual cells grow to form a colony. These cells make lots of hydrocarbons and then export them into an extracellular matrix for storage," Devarenne said. "And these hydrocarbons can be converted into fuels -- gasoline, kerosene and diesel, for example, the same way that one converts petroleum into these fuels."

Read more ...

More Articles ...

Subcategories