FAU Engineers Design New Autonomous System to Monitor Arctic Ice Melt

Typography

The rapid melting and thinning of the Arctic ice have sparked serious concerns in the scientific community.

The rapid melting and thinning of the Arctic ice have sparked serious concerns in the scientific community. In addition, sea ice thickness also has decreased, which makes ice cover more vulnerable to warming air and ocean temperature.

Understanding the ecological role of sea ice in the Arctic is crucial, particularly because the extent of sea ice in the region has been decreasing at an unprecedented rate. What would happen to the Arctic marine ecosystem if the sea ice melted even faster? To answer these questions, a long-term monitoring and data collection system is necessary in the harsh Arctic environment.

However, direct observation is challenging as satellite sensors have a coarse spatial resolution and cannot detect the fine fractal structure of the ice. Deploying human-crewed ships to the area also is difficult due to extreme weather conditions and obstacles posed by floating broken ice. Moreover, traditional ocean observation methods offer limited temporal and spatial coverage, while drones and autonomous underwater vehicles (AUVs) are hindered by energy constraints that restrict their research potential.

To overcome these challenges, researchers from the College of Engineering and Computer Science at Florida Atlantic University have proposed a design of an alternative, autonomous observational method, which holds promise for improving the autonomy of marine vehicles, aiding in maritime missions, and gaining a deeper understanding of how melting Arctic sea ice affects marine ecosystems.

Read more at Florida Atlantic University

Image: The conceptual design features a small waterplane area twin hull vessel that acts as a docking and charging station for autonomous underwater vehicles and unmanned aerial vehicles, using solar and turbine energy to enable continuous monitoring. (Credit: Florida Atlantic University)