Paving the Way to Quantum Supercomputers

Typography

In a milestone that brings quantum computing tangibly closer to large-scale practical use, scientists at Oxford University Physics have demonstrated the first instance of distributed quantum computing. 

In a milestone that brings quantum computing tangibly closer to large-scale practical use, scientists at Oxford University Physics have demonstrated the first instance of distributed quantum computing. Using a photonic network interface, they successfully linked two separate quantum processors to form a single, fully connected quantum computer, paving the way to tackling computational challenges previously out of reach. The results have been published today in Nature.

The breakthrough addresses quantum’s ‘scalability problem’: a quantum computer powerful enough to be industry-disrupting would have to be capable of processing millions of qubits. Packing all these processors in a single device, however, would require a machine of an immense size. In this new approach, small quantum devices are linked together, enabling computations to be distributed across the network. In theory, there is no limit to the number of processors that could be in the network.

The scalable architecture is based on modules which each contain only a small number of trapped-ion qubits (atomic-scale carriers of quantum information). These are linked together using optical fibres, and use light (photons) rather than electrical signals to transmit data between them. These photonic links enable qubits in separate modules to be entangled, allowing quantum logic to be performed across the modules using quantum teleportation.

Read more at University of Oxford

Image: Dougal Main and Beth Nichol working on the distributed quantum computer. Credit John Cairns. (Credit: John Cairns)