A Green Fuels Breakthrough: Bio-Engineering Bacteria to Become ‘Hydrogen Nanoreactors’

Typography

Researchers at the University of Oxford’s Department of Engineering Science have made major advances towards realising green hydrogen – the production of hydrogen by splitting water, powered by renewable energy.

Researchers at the University of Oxford’s Department of Engineering Science have made major advances towards realising green hydrogen – the production of hydrogen by splitting water, powered by renewable energy. Their approach, which focuses on bio-engineering bacteria to become ‘hydrogen nanoreactors’, could open the way towards a cost-effective, zero carbon method of generating hydrogen fuels.

Hydrogen could play a key role in helping us achieve net-zero emissions, since this burns cleanly without releasing CO2. However, current industrial hydrogen production depends heavily on fossil fuels, generating approximately 11.5–13.6 kilograms of CO2 emissions per kilogram of hydrogen produced.

In the new study, the researchers used a synthetic biology approach to convert a species of bacteria into a cellular ‘bionanoreactor’ to split water and produce hydrogen using sunlight. By generating a highly-efficient, stable and cost-effective catalyst, this overcomes one of the critical challenges that has been holding back green hydrogen to date.

Read More: University of Oxford

Photo Credit: dendoktoor via Pixabay