Two-decade-long dataset for entire atmosphere could benefit seasonal forecasts, climate models and space weather prediction.
Two-decade-long dataset for entire atmosphere could benefit seasonal forecasts, climate models and space weather prediction.
A team led by researchers at the University of Tokyo have created a dataset of the whole atmosphere, enabling new research to be conducted on previously difficult-to-study regions. Using a new data-assimilation system called JAGUAR-DAS, which combines numerical modeling with observational data, the team created a nearly 20-yearlong set of data spanning multiple levels of the atmosphere from ground level up to the lower edges of space. Being able to study the interactions of these layers vertically and around the globe could improve climate modeling and seasonal weather forecasting. There is also potential for interdisciplinary research between atmospheric scientists and space scientists, to investigate the interplay between space and our atmosphere and how it affects us on Earth.
Complaining about the weather, and about weather forecasters when they get things wrong, is a popular pastime for many. But a meteorologist’s job is not easy. Our atmosphere is multilayered, interconnected and complex, and global climate change is making it even harder to forecast both long-term and sudden, extreme weather events.
To help overcome these increasing challenges, researchers have created a dataset of the entire atmosphere. Ranging from September 2004 to December 2023, it spans multiple levels of the atmosphere from ground level up to the lower edge of space, about 110 kilometers above Earth’s surface. The region between about 50 km to 110 km (though exact ranges vary) is particularly of interest, as it is so notoriously difficult to study that it had previously been dubbed the “ignorosphere.” This region is too low for satellites and too high for weather balloons to observe, resulting in a shortage of data and consequently research. However, it is a fascinating area, characterized by vast global atmospheric tides and small-scale gravity waves which affect wind and temperature. It also plays an important role in the intensity of the impact of space weather events.
Read more at University of Tokyo
Photo Credit: gavens via Pixabay