Ligand-Engineered Copper Nanoclusters Could Help Combat CO₂ Emissions

Typography

While the humble copper (Cu) may not boast the allure of gold or silver, its remarkable versatility makes it invaluable in cutting-edge research.

While the humble copper (Cu) may not boast the allure of gold or silver, its remarkable versatility makes it invaluable in cutting-edge research. A collaborative effort by scientists from Tohoku University, the Tokyo University of Science, and the University of Adelaide has unveiled a groundbreaking method to enhance the selectivity and sustainability of electrochemical CO2 reduction processes. By engineering the surfaces of Cu nanoclusters (NCs) at the atomic level, the team has unlocked new possibilities for efficient and eco-friendly carbon conversion technologies. This breakthrough not only showcases the transformative potential of Cu in sustainable chemistry, but also highlights the critical impact of global collaboration in addressing pressing challenges like carbon emissions.

The results were published in the Small on December 4, 2024.

Electrochemical CO2 reduction reactions (CO2RR) have garnered significant attention in recent years for their potential to transform excess atmospheric CO2 into valuable products. Among the various nanocatalysts studied, NCs have emerged as a standout due to their distinct advantages over larger nanoparticles. Within this family, Cu NCs have shown great promise, offering formation of variable products, high catalytic activity, and sustainability. Despite these advantages, achieving precise control over product selectivity at an industrial scale remains a challenge. As a result, current research is intensely focused on refining these properties to unlock the full potential of Cu NCs for sustainable CO2 conversion.

Read more at Tohoku University

Photo Credit: marcinjozwiak via Pixabay