A Wobble From Mars Could Be Sign of Dark Matter, MIT Study Finds

Typography

Watching for changes in the Red Planet’s orbit over time could be new way to detect passing dark matter.

Watching for changes in the Red Planet’s orbit over time could be new way to detect passing dark matter.

In a new study, MIT physicists propose that if most of the dark matter in the universe is made up of microscopic primordial black holes — an idea first proposed in the 1970s — then these gravitational dwarfs should zoom through our solar system at least once per decade. A flyby like this, the researchers predict, would introduce a wobble into Mars’ orbit, to a degree that today’s technology could actually detect.

Such a detection could lend support to the idea that primordial black holes are a primary source of dark matter throughout the universe.

“Given decades of precision telemetry, scientists know the distance between Earth and Mars to an accuracy of about 10 centimeters,” says study author David Kaiser, professor of physics and the Germeshausen Professor of the History of Science at MIT. “We’re taking advantage of this highly instrumented region of space to try and look for a small effect. If we see it, that would count as a real reason to keep pursuing this delightful idea that all of dark matter consists of black holes that were spawned in less than a second after the Big Bang and have been streaming around the universe for 14 billion years.”

Read more at Massachusetts Institute of Technology

Photo Credit: BrunoAlbino via Pixabay