ISU Studies Explore Win-Win Potential of Grass-Powered Energy Production

Typography

Strategically planting perennial grass throughout corn and soybean fields helps address the unintended environmental consequences of growing the dominant row crops, including soil erosion, fertilizer runoff and greenhouse gas emissions.

Strategically planting perennial grass throughout corn and soybean fields helps address the unintended environmental consequences of growing the dominant row crops, including soil erosion, fertilizer runoff and greenhouse gas emissions.

But converting portions of farmland back to prairie has to make financial sense for farmers, which is why a research team led by Iowa State University landscape ecologist Lisa Schulte Moore has spent the past six years studying how to efficiently turn harvested grass into lucrative renewable natural gas.

“We’re looking at existing markets where there is already a demand, use existing infrastructure to reduce costs of the energy transition and create wins in multiple categories. We want wins for farmers, wins for businesses, wins for municipalities and wins for society,” said Schulte Moore, professor of natural resource ecology and management and director of the Consortium for Cultivating Human And Naturally reGenerative Enterprises (C-CHANGE). “We can have great conversations about what could be, but unless it benefits everyone along these supply chains, it won’t happen.”

A pair of recently published peer-reviewed articles by Schulte-Moore’s research group modeled the economic feasibility of grass-to-gas production in different settings and from varying perspectives, analysis that helps flesh out the system’s win-win potential.

Read more at Iowa State University

Image: An anaerobic digester used by the city of Ames' Water Pollution Control Facility. One of two recent feasibility studies by an Iowa State University research team exploring using prairie grass to make biofuels modeled an expanded network of anaerobic digesters in Ames. (Photo by Lisa Schulte Moore/Iowa State University)