Scientists for decades have attempted to learn more about the complex and mysterious chain of events by which tiny droplets in clouds grow large enough to begin falling toward the ground.
Scientists for decades have attempted to learn more about the complex and mysterious chain of events by which tiny droplets in clouds grow large enough to begin falling toward the ground. Better understanding this process, known as the “rain formation bottleneck,” is fundamental to improving computer model simulations of weather and climate and ultimately generating better forecasts.
Now a research team led by scientists at the U.S. National Science Foundation National Center for Atmospheric Research (NSF NCAR) has found that the turbulent movements of air in clouds play a key role in the growth of droplets and the initiation of rain.
The researchers applied advanced computer modeling to detailed observations of droplets in cumulus clouds that were taken during a NASA field campaign. This enabled them to track the impacts of turbulence on embryonic droplets that eventually coalesce into raindrops.
Read more at: National Center for Atmospheric Research
Photo Credit: FelixMittermeier via Pixabay