Melting Arctic glaciers are in rapid recession, and microscopic organisms colonise the newly exposed landscapes. Dr. James Bradley, Honorary Reader in Arctic Biogeochemistry in the School of Biological and Behavioural Sciences at Queen Mary University of London, and his team, have revealed that yeasts play an important role in soil formation in the Arctic after glaciers have melted away.
Melting Arctic glaciers are in rapid recession, and microscopic organisms colonise the newly exposed landscapes. Dr. James Bradley, Honorary Reader in Arctic Biogeochemistry in the School of Biological and Behavioural Sciences at Queen Mary University of London, and his team, have revealed that yeasts play an important role in soil formation in the Arctic after glaciers have melted away.
Roughly 10% of Earth’s land surface is covered by glacial ice. However, glaciers are retreating ever further and ever faster because of global warming. As they do, they expose new landscapes which, for many thousands of years, have been covered in ice. After the glacial ice is gone, microscopic lifeforms colonise the now accessible bedrock, accumulating nutrients and forming new soils and ecosystems. As soil can be a significant carbon store under the right circumstances, how exactly new soils form after the melting of glaciers is a question of great scientific and societal relevance.
To study the formation of Arctic soils, a team led by Dr Bradley travelled to Svalbard – an archipelago of islands roughly halfway between the North Pole and Norway's northern coast, and well above the Arctic circle. Here, the climate is warming seven times faster than the rest of the world, and glaciers are in rapid decline. The barren landscapes that are exposed offer very little to support any form of life: the rocky terrain is lacking nutrients, temperatures drop to well below freezing for months on end, and because of its high latitude, there is a complete lack of sunlight during the winter polar night. The very first pioneer colonisers of the inhospitable terrain are microorganisms such as bacteria and fungi. These microbes determine how much carbon and nitrogen can be stored in the soils – but very little is known about the exact processes behind this nutrient stabilisation through microbial activity. Bradley and his team studied these soils to better understand how microbes contribute to the process of soil formation when glaciers vanish. The results of the study, in which other researchers from Germany, the United States, and Switzerland were involved, have now been published in the journal Proceedings of the National Academy of Sciences (PNAS). The research was funded by the UK Natural Environment Research Council (NERC), the US National Science Foundation (NSF), and the German National Science Foundation (DFG).
Read more at Queen Mary University of London
Photo Credit: makabera via Pixabay