Abrupt shifts within complex systems such as the Earth’s climate system are extremely hard to predict.
Abrupt shifts within complex systems such as the Earth’s climate system are extremely hard to predict. Researchers at the Technical University of Munich (TUM) and the Potsdam Institute for Climate Impact Research (PIK) have now succeeded in developing a new method to anticipate such tipping points in advance. They successfully tested the reliability of their method using one of the most severe abrupt climate changes of the past: the shift of the once-green Sahara into a desert.
From the last ice age until around 6000 years ago, the region now known as the Sahara Desert was a lush, green landscape teeming with life. This “African Humid Period” ended abruptly, transforming this thriving region into the arid terrain seen today. Scientists have long puzzled over how the slow changes in solar radiation due to variations in Earth’s orbit could lead to such an abrupt large-scale climate transition. This mystery highlights the broader challenge of understanding and predicting abrupt shifts in natural systems—commonly linked to tipping points.
New study by Andreas Morr and Prof. Niklas Boers, researchers at TUM and PIK, introduces an advanced early detection method that provides more accurate and reliable early warnings, particularly under more realistic external conditions. Traditional methods assume that random disturbances in a system are uncorrelated in time. However, this is not realistic for climate systems, because it assumes each day's weather would be independent of the previous day. In reality, tomorrow's weather heavily depends on today's. This mismatch reduces the reliability of conventional methods for early warning signals. The new method by Morr and Boers addresses this limitation by developing estimators of system stability designed specifically for more realistic climate conditions.
Read more at Technical University of Munich (TUM)
Photo Credit: Sandal74 via Pixabay