From Seashells to Cement, Nature Inspires Tougher Building Material

Typography

Inspired by the material that makes up oyster and abalone shells, engineers at Princeton have created a new cement composite that is 17 times more crack-resistant than standard cement and 19 times more able to stretch and deform without breaking. 

Inspired by the material that makes up oyster and abalone shells, engineers at Princeton have created a new cement composite that is 17 times more crack-resistant than standard cement and 19 times more able to stretch and deform without breaking. The findings could eventually help increase the crack resistance of a wide range of brittle ceramic materials, from concrete to porcelain.

“If we can engineer concrete to resist crack propagation, we can make it tougher, safer and more durable,” said researcher Shashank Gupta, a graduate student in Reza Moini’s lab in the Department of Civil and Environmental Engineering.

In an article published June 10 in the journal Advanced Functional Materials, the research team led by Moini, an assistant professor of civil and environmental engineering, reported that creating alternating layers of tabulated cement paste and thin polymer can significantly increase crack resistance and the ability to deform without completely breaking (ductility).

Read more at Princeton University, Engineering School

Photo Credit: Pexels via Pixabay