New study finds seafloor topography accounts for up to 50% of the changes in depth at which carbon has been sequestered.
New study finds seafloor topography accounts for up to 50% of the changes in depth at which carbon has been sequestered.
The movement of carbon between the atmosphere, oceans and continents — the carbon cycle — is a fundamental process that regulates Earth’s climate. Some factors, like volcanic eruptions or human activity, emit carbon dioxide into the atmosphere. Others, such as forests and oceans, absorb that CO2. In a well-regulated system, the right amount of CO2 is emitted and absorbed to maintain a healthy climate. Carbon sequestration is one tactic in the current battle against climate change.
A new study finds that the shape and depth of the ocean floor explain up to 50% of the changes in depth at which carbon has been sequestered in the ocean over the past 80 million years. Previously, these changes have been attributed to other causes. Scientists have long known that the ocean, the largest absorber of carbon on Earth, directly controls the amount of atmospheric carbon dioxide. But, until now, exactly how changes in seafloor topography over Earth’s history affect the ocean’s ability to sequester carbon was not well understood.
Read more at University of California - Los Angeles
Photo Credit: PublicCo via Pixabay