Global Study Reveals Health Impacts of Airborne Trace Elements

Typography

Researchers led by Randall Martin investigate global particulate matter, revealing health risks from trace elements.

Researchers led by Randall Martin investigate global particulate matter, revealing health risks from trace elements.

As anyone with seasonal allergies knows, unseen airborne particles can really wreck a person’s day. Like the tree pollen that might be plaguing you this spring, small concentrations of trace elements in the air can have significant negative impacts on human health. However, unlike pollen counts and other allergy indices, which are carefully tracked and widely available, limited knowledge exists about the ambient concentrations of cancer-causing trace elements like lead and arsenic in urban areas of developing countries.

A recent effort led by Randall Martin, the Raymond R. Tucker Distinguished Professor in the McKelvey School of Engineering at Washington University in St. Louis, analyzed global ambient particulate matter (PM) to understand two of its key components, mineral dust and trace element oxides. Trace elements – such as lead and arsenic – have well documented associations with adverse health outcomes. While dust originates from both natural sources like deserts and human activities like construction and agriculture, trace elements are predominantly emitted by human activities like fossil fuel combustion and industrial processes.

Read more at Washington University in St. Louis

Photo Credit: b13923790 via Pixabay