Researchers at the University of Copenhagen have concluded that the methane uptake in dry landscapes exceeds methane emissions from wet areas across the ice-free part of Greenland.
Researchers at the University of Copenhagen have concluded that the methane uptake in dry landscapes exceeds methane emissions from wet areas across the ice-free part of Greenland. The results of the new study contribute with important knowledge for climate models. The researchers are now investigating whether the same finding applies to other polar regions.
It has long been thought that the Arctic may be a ticking climate bomb. As local temperatures rise and permafrost thaws, more and more of the greenhouse gas methane is released. But in a new study from the Department of Geosciences and Natural Resource Management at the University of Copenhagen, researchers have been able to conclude that at least Greenland does not seem to be a methane bomb after all.
In fact, Greenland consumes more methane than it releases, according to analyses of soil samples from eleven areas across Greenland. The researchers used an existing dynamic methane model, which made it possible to quantify the methane budget for all of Greenland.
Read more at University of Copenhagen - Faculty of Science
Image: The ice-free area of Greenland is dominated by dry tundra, and here in North Greenland, consists of dry landscapes where there is hardly any vegetation. Sample measurements from this region indicate that this is where the largest uptake of atmospheric methane occurs in Greenland. (Photo Credit: Bo Elberling)