Gas exchanges between the atmosphere and the ocean are a key part of the carbon cycle, playing a vital role in climate regulation and maintenance of the planet’s ecological equilibrium.
Gas exchanges between the atmosphere and the ocean are a key part of the carbon cycle, playing a vital role in climate regulation and maintenance of the planet’s ecological equilibrium. The oceans are thought to absorb roughly a third of all the carbon dioxide (CO2) emitted by humanity. Understanding the complex processes involved in this gas exchange is therefore extremely important, especially in the context of the global climate crisis.
A new study discusses the processes that governed gas flows between the atmosphere and the South Atlantic in the recent past, showing a noteworthy natural balance in CO2 exchanges even in a scenario of abrupt climate change. The study was conducted in Brazil and funded by FAPESP. An article about it is published in the journal Global and Planetary Change.
“We investigated periods in the recent geological past when the global climate underwent abrupt changes caused by a reduction in the intensity of the Atlantic meridional overturning circulation [AMOC]. These events are named Heinrich Stadials (HS) after the German climatologist Hartmut Heinrich,” said Tainã Pinho, corresponding author of the article. The study was part of his master’s research at the University of São Paulo’s Institute of Geosciences (IGc-USP).
Read more at: Fundacao de Amparo a Pesquisa do Estado de Sao Paulo
Collecting marine sediment cores during the Amaryllis expedition (photo: Thomas Kenji Akabane/USP)