The research, led by the University of Bristol and published in Science, found these two opposing electronic states exist within purple bronze, a unique one-dimensional metal composed of individual conducting chains of atoms.
The research, led by the University of Bristol and published in Science, found these two opposing electronic states exist within purple bronze, a unique one-dimensional metal composed of individual conducting chains of atoms.
Tiny changes in the material, for instance prompted by a small stimulus like heat or light, may trigger an instant transition from an insulating state with zero conductivity to a superconductor with unlimited conductivity, and vice versa. This polarised versatility, known as ‘emergent symmetry’, has the potential to offer an ideal On/Off switch in future quantum technology developments.
Lead author Nigel Hussey, Professor of Physics at the University of Bristol, said: “It’s a really exciting discovery which could provide a perfect switch for quantum devices of tomorrow.
Read More: University of Bristol
Image shows a representation of emergent symmetry, showing a perfectly symmetric water droplet emerging from a layering of snow. The ice crystals in the snow, by contrast, have a complex shape and therefore a lower symmetry than the water droplet. The purple colour denotes the purple bronze material in which this phenomenon was discovered. (Photo Credit: University of Bristol)