A replacement for cobalt in batteries avoids its environmental and social impacts.
A replacement for cobalt in batteries avoids its environmental and social impacts.
High-capacity and reliable rechargeable batteries are a critical component of many devices and even modes of transport. They play a key role in the shift to a greener world. A wide variety of elements are used in their production, including cobalt, the production of which contributes to some environmental, economic, and social issues. For the first time, a team including researchers from the University of Tokyo presents a viable alternative to cobalt which in some ways can outperform state-of-the-art battery chemistry. It also survives a large number of recharge cycles, and the underlying theory can be applied to other problems.
The chances are, you are reading this article on a laptop or smartphone, and if not, you probably own at least one of those. Inside either device, and many others, you will find a lithium-ion battery (LIB). For decades now, LIBs have been the standard way of powering portable or mobile electronic devices and machines. As the world transitions from fossil fuels, they are seen as an important step for use in electric cars and home batteries for those with solar panels. But just as batteries have a positive end and a negative end, LIBs have negative points set against their positive ones.
For one thing, although they are some of the most power-dense portable power sources available, many people wish that LIBs could yield a larger energy density to make them either last longer or power even more demanding machines. Also, they can survive a large number of recharge cycles, but they also degrade with time; it would be better for everyone if batteries could survive more recharge cycles and maintain their capacities for longer. But perhaps the most alarming problem with current LIBs lies in one of the elements used for their construction.
Read more at University of Tokyo