A new electrical method to conveniently change the direction of electron flow in some quantum materials could have implications for the development of next-generation electronic devices and quantum computers.
A new electrical method to conveniently change the direction of electron flow in some quantum materials could have implications for the development of next-generation electronic devices and quantum computers. A team of researchers from Penn State developed and demonstrated the method in materials that exhibit the quantum anomalous Hall (QAH) effect — a phenomenon in which the flow of electrons along the edge of a material does not lose energy. The team described the work in a paper appearing today (Oct. 19) in the journal Nature Materials.
“As electronic devices get smaller and computational demands get larger, it is increasingly important to find ways to improve the efficiency of information transfer, which includes the control of electron flow,” said Cui-Zu Chang, Henry W. Knerr Early Career Professor and associate professor of physics at Penn State and co-corresponding author of the paper. “The QAH effect is promising because there is no energy loss as electrons flow along the edges of materials.”
In 2013, Chang was the first to experimentally demonstrate this quantum phenomenon. Materials exhibiting this effect are referred to as QAH insulators, which are a type of topological insulator — a thin layer of film only a couple dozen atoms thick — that have been made magnetic so that they only conduct current on their edges. Because the electrons travel cleanly in one direction, the effect is referred to as dissipationless, meaning no energy is lost in the form of heat.
Read more at: Penn State University