It's Easier to Get Valuable Metals From Battery Waste if You ‘Flash’ it

Typography

Demand for valuable metals needed in batteries is poised to grow over the coming decades in step with the growth of clean energy technologies, and the best place to source them may be by recycling spent batteries.

Demand for valuable metals needed in batteries is poised to grow over the coming decades in step with the growth of clean energy technologies, and the best place to source them may be by recycling spent batteries.

A battery recycling process developed by Rice University scientists can remove the inert layer on battery metals and lower their oxidation state, making them soluble in low-concentration acid. Using its signature Joule-heating technique to bring the combined cathode and anode waste to temperatures above 2100 degrees Kelvin in seconds, the lab of Rice chemist James Tour achieved a metal recovery yield exceeding 98% from various types of mixed battery waste.

“We developed a high-yield, low-cost method of reclaiming metals directly from ‘black mass’ ⎯ the combined cathode and anode waste the industry traditionally tries to recycle ⎯ that significantly reduces the environmental footprint of spent battery processing,” said Jinhang Chen, a Rice chemistry graduate student and co-lead author on a study published in Science Advances.

Read more at: Rice University

Jinhang Chen (left) and James Tour (Photo by Jeff Fitlow/Rice University)