A researcher at West Virginia University is unearthing what facilitates the robust growth of Miscanthus grass, a bioenergy crop that grows well on reclaimed Appalachian mine lands and holds the potential to produce fuel and capture carbon dioxide.
A researcher at West Virginia University is unearthing what facilitates the robust growth of Miscanthus grass, a bioenergy crop that grows well on reclaimed Appalachian mine lands and holds the potential to produce fuel and capture carbon dioxide.
Little is known about what makes the crop so effective, so Jennifer Kane, a plant and soil sciences postdoctoral scholar at the Davis College of Agriculture, Natural Resources and Design, is studying how microbes — like bacteria and fungi — interact with Miscanthus roots to boost the plant’s productivity and sustainability.
Funded with a $219,000 grant from the National Institute of Food and Agriculture, Kane is working with mentors Ember Morrissey and Edward Brzostek who is with the Department of Biology. Kane, a Lester native, will measure the roots, study their chemistry and activity, and connect that data with what’s happening aboveground. Evaluating the system holistically may help researchers understand what conditions enable the plant to prosper.
Read more at: West Virginia University
Miscanthus is a bioenergy crop that holds the potential to produce fuel and capture carbon dioxide. Jennifer Kane, a postdoctoral student at West Virginia University, was recently awarded a $219,000 grant from the National Institute of Food and Agriculture to study how microbes — like bacteria and fungi — interact with Miscanthus roots to boost the plant’s productivity and sustainability. (Photo Credit: WVU)