Texas A&M Researchers Integrating New AI Tools For Plant Analysis

Typography

Plant phenotyping is the process of measuring and analyzing observable plant characteristics. In addition to ensuring a healthier crop yield, this process is essential for various current societal challenges, such as energy demands (i.e. biofuels) and food security.

Plant phenotyping is the process of measuring and analyzing observable plant characteristics. In addition to ensuring a healthier crop yield, this process is essential for various current societal challenges, such as energy demands (i.e. biofuels) and food security.

Dr. Joshua Peeples, ACES assistant professor in the Department of Electrical and Computer Engineering at Texas A&M University, is joining forces with Texas A&M AgriLife Research faculty to develop an automated data analysis system that uses artificial intelligence (AI) approaches to autonomously analyze plant images collected from the new state-of-the-art Texas A&M Plant Growth and Phenotyping Facility.

The project includes four major components — data collection, preprocessing, discovery and analysis. Dr. Seth Murray, professor and Eugene Butler Endowed Chair in the Texas A&M Department of Soil and Crop Sciences, and his team are among several users of the facility collecting the data to make further discoveries. Peeples and his students focus on novel automated approaches to data preprocessing and analysis. This work includes tasks such as reducing the amount of background information to identify plants in a region(s) of interest more easily, extracting plant measurements and features, and delivering the concluding analysis. Such advancement is critical for agricultural researchers to turn plant images into scientific knowledge.

Read more at: Texas A&M University

Dr. Seth Murray, Dr. Joshua Peeples, Yash Zambre and Akshatha Mohan in the Texas A&M Plant Growth and Phenotyping Facility. The facility utilizes advanced sensors, robotics, big data and controlled environment technology in a revolutionary new imaging system to precisely study agricultural crops. (Photo Credit: Texas A&M University College of Engineering)