Technology used in cancer research leads to roadmap of chemicals important for agriculture, food production and climate resilience.
Technology used in cancer research leads to roadmap of chemicals important for agriculture, food production and climate resilience.
On a sunny springtime stroll through a park, it’s easy to ignore the parts of plants that are hidden from view. Plant biologists see things differently. They look below the surface where plant roots are organized in elaborate systems that are critical to the organism’s development. Intricately organized tree root systems, for example, can span as far underground as the tree grows high above the soil.
Applying an advanced imaging technology to plant roots, researchers at the University of California San Diego and Stanford University have developed a new understanding of essential root chemicals that are responsible for plant growth. Using a type of mass spectrometer, a study led by UC San Diego Biological Sciences Postdoctoral Scholar Tao Zhang and Assistant Professor Alexandra Dickinson produced a “roadmap” that profiles where key small molecules are distributed along stem cells of maize (corn) plant roots and how their placement factors into the plant’s maturation. The findings were published in the journal Nature Communications.
Read more at University of California - San Diego
Image: UC San Diego and Stanford scientists studied maize (corn) plant roots and their metabolites—molecules involved in the plant’s energy production—under different settings, including a control condition (left) and treated with aconitate (center) and succinate (right). (Credit: Dickinson Lab, UC San Diego)