A new study provides the first observational evidence of the stabilization of the anti-cyclonic Beaufort Gyre, which is the dominant circulation of the Canada Basin and the largest freshwater reservoir in the Arctic Ocean.
A new study provides the first observational evidence of the stabilization of the anti-cyclonic Beaufort Gyre, which is the dominant circulation of the Canada Basin and the largest freshwater reservoir in the Arctic Ocean.
The study uses a newly extended record of “dynamic ocean topography” satellite data from 2011-2019 provided by two of the co-authors, along with an extensive hydrographic dataset from 2003-2019, to quantify the changing sea surface height of the gyre in recent years.
Previous observations and modeling that relied on earlier dynamic ocean topography data up to 2014 have documented that the gyre has strengthened and increased its freshwater content by 40% compared with 1970s climatology. Stabilization of the gyre could be a precursor of a huge freshwater release, which could have significant ramifications including impacting the Atlantic Meridional Overturning Circulation (AMOC), a key component of global climate.
Read more at: Woods Hole Oceanographic Institute
Sunrise at the ice horizon in the western Arctic Ocean (Photo Credit: Peigen Lin ©Woods Hole Oceanographic Institution)