Bacterial Injection System Delivers Proteins in Mice and Human Cells

Typography

Researchers at the McGovern Institute for Brain Research at MIT and the Broad Institute of MIT and Harvard have harnessed a natural bacterial system to develop a new protein delivery approach that works in human cells and animals.

Researchers at the McGovern Institute for Brain Research at MIT and the Broad Institute of MIT and Harvard have harnessed a natural bacterial system to develop a new protein delivery approach that works in human cells and animals. The technology, described today in Nature, can be programmed to deliver a variety of proteins, including ones for gene editing, to different cell types. The system could potentially be a safe and efficient way to deliver gene therapies and cancer therapies.

Led by MIT Associate Professor Feng Zhang, who is a McGovern Institute investigator and Broad Institute core member, the team took advantage of a tiny syringe-like injection structure, produced by a bacterium, that naturally binds to insect cells and injects a protein payload into them. The researchers used the artificial intelligence tool AlphaFold to engineer these syringe structures to deliver a range of useful proteins to both human cells and cells in live mice.

“This is a really beautiful example of how protein engineering can alter the biological activity of a natural system,” says Joseph Kreitz, the study’s first author, a graduate student in biological engineering at MIT, and a member of Zhang’s lab. “I think it substantiates protein engineering as a useful tool in bioengineering and the development of new therapeutic systems.”

Read more at Massachusetts Institute of Technology

Image: Purified Photorhabdus virulence cassettes, imaged using transmission electron microscopy. Image Credits: Joseph Kreitz/Broad Institute, McGovern Institute