When looking at the Earth from space, its hemispheres – northern and southern – appear equally bright.
When looking at the Earth from space, its hemispheres – northern and southern – appear equally bright. This is particularly unexpected because the Southern Hemisphere is mostly covered with dark oceans, whereas the Northern Hemisphere has a vast land area that is much brighter than these oceans. For years, the brightness symmetry between hemispheres remained a mystery. In a new study, published in the Proceedings of the National Academy of Sciences (PNAS), Weizmann Institute of Science researchers and their collaborators reveal a strong correlation between storm intensity, cloudiness and the solar energy reflection rate in each hemisphere. They offer a solution to the mystery, alongside an assessment of how climate change might alter the reflection rate in the future.
As early as the 1970s, when scientists analyzed data from the first meteorological satellites, they were surprised to find out that the two hemispheres reflect the same amount of solar radiation. Reflectivity of solar radiation is known in scientific lingo as “albedo.” To better comprehend what albedo is, think about driving at night: It is easy to spot the intermittent white lines, which reflect light from the car’s headlights well, but difficult to discern the dark asphalt. The same is true when observing Earth from space: The ratio of the solar energy hitting the Earth to the energy reflected by each region is determined by various factors. One of them is the ratio of dark oceans to bright land, which differ in reflectivity, just like asphalt and intermittent white lines. The land area of the Northern Hemisphere is about twice as large as that of the Southern, and indeed when measuring near the surface of the Earth, when the skies are clear, there is more than a 10 percent difference in albedo. Still, both hemispheres appear to be equally bright from space.
In this study, the team of researchers, led by Prof. Yohai Kaspi and Or Hadas of Weizmann’s Earth and Planetary Sciences Department, focused on another factor influencing albedo, one located in high altitudes and reflecting solar radiation – clouds. The team analyzed data derived from the world’s most advanced databases, including cloud data collected via NASA satellites (CERES), as well as data from ERA5, which is a global weather database containing information collected using a variety of sources in the air and on the ground, dating back to 1950. ERA5 data was utilized to complete cloud data and to cross-correlate 50 years of this data with information on the intensity of cyclones and anticyclones.
Read more at Weizmann Institute of Science
Photo Credit: PIRO4D via Pixabay