The atmospheric level of carbon dioxide — a gas that is great at trapping heat, contributing to climate change — is almost double what it was prior to the Industrial Revolution, yet it only constitutes 0.0415% of the air we breathe.
The atmospheric level of carbon dioxide — a gas that is great at trapping heat, contributing to climate change — is almost double what it was prior to the Industrial Revolution, yet it only constitutes 0.0415% of the air we breathe.
This presents a challenge to researchers attempting to design artificial trees or other methods of capturing carbon dioxide directly from the air. That challenge is one a Sandia National Laboratories-led team of scientists is attempting to solve.
Led by Sandia chemical engineer Tuan Ho, the team has been using powerful computer models combined with laboratory experiments to study how a kind of clay can soak up carbon dioxide and store it.
The scientists shared their initial findings in a paper published earlier this week in The Journal of Physical Chemistry Letters.
Read more at: Sandia National Laboratories
Sandia National Laboratories bioengineer Susan Rempe, left, and chemical engineer Tuan Ho peer through an artistic representation of the chemical structure of a kind of clay. Their team is studying how clay could be used to capture carbon dioxide. (Photo Credit: Craig Fritz/Sandia National Laboratories)