Compound Extreme Events Stress the Ocean

Typography

When marine heatwaves and ocean acidity extreme events co-occur, it can have severe impacts on marine ecosystems.

When marine heatwaves and ocean acidity extreme events co-occur, it can have severe impacts on marine ecosystems. Researchers at the Oeschger Center for Climate Change Research at the University of Bern have determined for the first time the frequency and drivers of these compound events and have projected them into the future.

It's not just the land that is groaning under the heat – the ocean is also suffering from heatwaves. In the Mediterranean Sea along the Italian and Spanish coasts, for example, water temperatures are currently up to 5 °C higher than the long-term average at this time of year. Scientists have investigated marine heatwaves for a few years now – for example at the University of Bern. However, relatively little is known about how marine heatwaves co-occur with other extreme events in the ocean. Such events are known as compound events and considered to be a major risk of climate change. While the processes that lead to extreme events on land, such as floods, forest fires, heatwaves, or droughts and how they interact with each other have been intensively studied in the past, the finding that ocean weather and climate extreme events can also occur in combination is relatively new.

A group of researchers at the Oeschger Center for Climate Change Research, led by Thomas Frölicher, has now investigated whether marine heatwaves co-occur in combination with extreme events in other potential marine ecosystem stressors. In addition to heat, potential stressors also include high acidity levels in the ocean. "For the first time, we have quantified the frequency of compound events in which marine heatwaves happen together with extreme acidity", says Friedrich Burger, postdoctoral researcher and first author of the study just published in the journal Nature Communications. Extreme events of high ocean acidity are occurrences where the proton concentration in seawater is higher than normal.

Read more at: University of Bern

Sea snails - the picture shows a pteropod - play an important role in the marine food web. They are especially sensitive to ocean warming and acidification. (Photo Credit: © Charlotte Havermans)