Top Predators Could ‘Trap’ Themselves Trying to Adapt to Climate Change, Study Shows

Typography

As climate change alters environments across the globe, scientists have discovered that in response, many species are shifting the timing of major life events, such as reproduction. 

As climate change alters environments across the globe, scientists have discovered that in response, many species are shifting the timing of major life events, such as reproduction. With an earlier spring thaw, for example, some flowers bloom sooner. But scientists don’t know whether making these significant changes in life history will ultimately help a species survive or lead to bigger problems.

A study published the week of June 27 in the Proceedings of the National Academy of Sciences shows for the first time that a species of large carnivore has made a major change to its life history in response to a changing climate — and may be worse off for it.

A team led by researchers at the University of Washington, in collaboration with Botswana Predator Conservation, a local NGO, analyzed field observations and demographic data from 1989 to 2020 for populations of the African wild dog — Lycaon pictus. They discovered that, over a 30-year period, the animals shifted their average birthing dates later by 22 days, an adaptation that allowed them to match the birth of new litters with the coolest temperatures in early winter. But as a result of this significant shift, fewer pups survived their most vulnerable period because temperatures during their critical post-birth “denning period” increased over the same time period, threatening the population of this already endangered species.

This study shows that African wild dogs, which are distantly related to wolves and raise young cooperatively in packs, may be caught in a “phenological trap,” according to lead author Briana Abrahms, a UW assistant professor of biology and researcher with the Center for Ecosystem Sentinels. In a phenological trap, a species changes the timing of a major life event in response to an environmental cue — but, that shift proves maladaptive due to unprecedented environmental conditions like climate change.

Read more at University of Washington

Photo Credit: Tijaw via Wikimedia Commons