The new study, published in Nature Communications, demonstrates how changes in temperature and plate tectonics, where the positions of Earth’s continents were in very different positions than today, have determined the distribution of corals through the ages.
The new study, published in Nature Communications, demonstrates how changes in temperature and plate tectonics, where the positions of Earth’s continents were in very different positions than today, have determined the distribution of corals through the ages.
Although climate has often been regarded as the main driver of the location of coral reefs, this had yet to be proven due to limited fossil records. Now, for the first time, a team of international scientists used habitat modelling and reconstructions of past climates to predict the distribution of suitable environments for coral reefs over the last 250 million years.
The researchers, from the University of Vigo, in Spain, the University of Bristol and University College London in the UK, then checked their predictions using fossil evidence of warm-water coral reefs. They showed that corals in the past, from 250 to about 35 million years ago, existed much further from the equator than today, due to warmer climatic conditions, and a more even distribution of shallow ocean floor.
“Our work demonstrates that warm-water coral reefs track tropical-to-subtropical climatic conditions over geological timescales. In warmer intervals, coral reefs expanded poleward. However, in colder intervals, they became constrained to tropical and subtropical latitudes,” said first author Dr Lewis Jones, a computational palaeobiologist research fellow at the University of Vigo.
Read more at: University of Bristol
Photo Credit: Ipittman via Pixabay)