A new study provides a framework to boost crop growth by incorporating a strategy adopted from a fast-growing species of green algae.
A new study provides a framework to boost crop growth by incorporating a strategy adopted from a fast-growing species of green algae. The algae, known as Chlamydomonas reinhardtii, contain an organelle called the pyrenoid that speeds up the conversion of carbon, which the algae absorb from the air, into a form that the organisms can use for growth. In a study published May 19, 2022(link is external) in the journal Nature Plants, Martin Jonikas, Ned Wingreen, and researchers at Northwestern University(link is external) used molecular modeling to identify the features of the pyrenoid that are most critical for enhancing carbon fixation, and then mapped how this functionality could be engineered into crop plants.
This isn’t just an academic exercise. For many people today, the bulk of food calories come from crop plants domesticated thousands of years ago. Since then, advancements in irrigation, fertilization, breeding and the industrialization of farming have helped feed the burgeoning human population. However, by now only incremental gains can be extracted from these technologies. Meanwhile, food insecurity, already at crisis levels for much of the world’s population, is predicted to worsen due to a changing climate.
New technology could reverse this trend. Many scientists believe the algal pyrenoid offers just such an innovation. If scientists can engineer a pyrenoid-like ability to concentrate carbon into plants such as wheat and rice, these important food sources could experience a major boost to their growth rates.
Read more at: Princeton University
Photo Credit: kangbch via Pixabay