Water often falls from the sky and is stored in mountains across the U.S. as snow before it melts and flows down to urban and rural communities.
Water often falls from the sky and is stored in mountains across the U.S. as snow before it melts and flows down to urban and rural communities. Knowing what factors influence when and how much of that snowmelt ultimately makes it to streams, rivers and reservoirs is crucial for water managers trying to make the most of limited water resources. A new study led by researchers at University of Nevada, Reno and the Desert Research Institute (DRI) published in Environmental Research Letters identifies three major factors that influence snowmelt-driven water supplies and identifies regions where mountain water supplies respond differently to climate change. The study used data from 537 watersheds across the U.S.
Relying on 30-plus years of previous research compiled over more than two years, the research found that three factors – how much of the total winter snowfall is available at the end of the winter, how fast snow melts, and when snow melts – can be used to better predict how climate change will impact critical snowmelt-driven water supplies. And, the research team found major differences in how much each of these factors influence different watersheds throughout the country.
“Particularly in the Western U.S, snow is really the backbone of our water supply systems,” said Beatrice Gordon, the lead author and a doctoral student in the University of Nevada, Reno Graduate Program of Hydrologic Sciences and the Department of Natural Resources & Environmental Science. “But what’s challenging is that mountain water supplies respond differently to changes in snow depending on where you are in the U.S. Given that challenge, our goal was to provide other scientists and water managers with a simple, but powerful framework that can be used to improve predictions about the timing and amount of streamflow as climate change accelerates.”
Read more at: University of Nevada, Reno
Snow and glacial melt from the Wind River Mountains in Wyoming feeds the Wind River via Dinwoody Creek. (Photo Credit: Beatrice Gordon, University of Nevada, Reno)