It doesn’t come on fast. It may take weeks to notice. You have the newly recharged lithium-ion AA batteries in the wireless kitty water fountain, and they last two days.
It doesn’t come on fast. It may take weeks to notice. You have the newly recharged lithium-ion AA batteries in the wireless kitty water fountain, and they last two days. They once lasted a week or more. Another round of charging, and they last one day. Soon, nothing.
You would be forgiven if you stood there and questioned your own actions. “Wait, did I recharge these?”
Relax, it’s not you. It’s the battery. Nothing lasts forever, not even the supposed long-lasting rechargeable batteries, be they AAs or AAAs bought in store or the batteries inside our cellphones, wireless earbuds, or cars. Batteries decay.
Feng Lin, an associate professor in the Department of Chemistry, part of the Virginia Tech College of Science, is part of a new international, multi-agency/university study published today in Science that takes a new look behind the factors that drive a battery’s lifespan and how those factors actually change over time in fast-charging conditions. Early on, the study finds, battery decay seems driven by the properties of individual electrode particles, but after several dozen charging cycles, it’s how those particles are put together that matters more.
Read more at Virginia Tech
Image: Hundreds of batteries sit on massive racks, blinking red and green, and are tested everyday inside Feng Lin's lab. The green and red lights mean the testing channels are working. (Credit: Photo courtesy Feng Lin)