New Antimicrobial Air Filters Tested on Trains Rapidly Kill Sars-Cov-2 and Other Viruses

Typography

Researchers at the University of Birmingham working in partnership with firms NitroPep Ltd and Pullman AC have developed new antimicrobial technology for air filters which can in seconds kill bacteria, fungi and viruses including SARS-CoV-2 - providing a potential solution to prevent the spread of airborne infections.

Researchers at the University of Birmingham working in partnership with firms NitroPep Ltd and Pullman AC have developed new antimicrobial technology for air filters which can in seconds kill bacteria, fungi and viruses including SARS-CoV-2 - providing a potential solution to prevent the spread of airborne infections.

In a study, published today (9 March 2022) in the journal Scientific Reports, the antimicrobial treatment for air filters - coated with a chemical biocide called chlorhexidine digluconate (CHDG) - were rigorously tested and compared to commonly used standard ‘control’ filters in the laboratory, in industrial air condensing units, and in a trial on-board trains operating on the UK’s railways.

In the laboratory, cells of the Wuhan strain of SARS-CoV-2 – the virus that causes COVID-19 - were added to the surface of both the treated and control filters and measured at intervals over a period of more than an hour. The results showed that, while much of the virus remained on the surface of the control filter for an hour, all SARS-CoV-2 cells were killed within 60 seconds on the treated filter. Similar results were seen in experiments testing bacteria and fungi that commonly cause illness in humans – including E. coli, S. aureus, and C. albicans – proving the novel technology to be both highly effective anti-fungal and anti-bacterial air filter treatments.

Read more at University of Birmingham

Photo Credit: Engin_Akyurt via Pixabay