An analysis of Antarctica’s Pope, Smith and Kohler glaciers by researchers at the University of California, Irvine, NASA’s Jet Propulsion Laboratory, the University of Houston and other institutions has revealed an aggressive pattern of retreat connected to high melt rates of floating ice in the Amundsen Sea Embayment sector of West Antarctica.
An analysis of Antarctica’s Pope, Smith and Kohler glaciers by researchers at the University of California, Irvine, NASA’s Jet Propulsion Laboratory, the University of Houston and other institutions has revealed an aggressive pattern of retreat connected to high melt rates of floating ice in the Amundsen Sea Embayment sector of West Antarctica.
In a paper published recently in Nature Geoscience, the team reports that the grounding line – where ice moves off the land and begins to float – of Pope Glacier retreated 3.5 kilometers in 3.6 months for an average of nearly 12 kilometers per year in 2017. Between 2016 and 2018, the western portion of Smith Glacier retreated at 2 kilometers per year and Kohler Glacier at 1.3 kilometers per year.
Observations from 2018 to 2020 showed a slowing of these rates, but the movement is still faster than anticipated by the glaciology community’s yearly numerical models, according to the researchers.
“Alpine glaciers retreat by about 1 kilometer per century, so it’s alarming to see these Antarctic glaciers receding at as much as 12 times that rate per year,” said co-author Eric Rignot, UCI Donald Bren Professor and Chancellor’s Professor of Earth system science and NASA JPL senior research scientist. “This pace is at the upper limit of what our models can replicate.”
Read more at University of California - Irvine
Image: For a recent paper in Nature Geoscience, UCI, NASA JPL and other researchers used satellite data to study the Pope, Smith and Kohler glaciers that drain into the Amundsen Sea Embayment in West Antarctica. They gained valuable information about ice-ocean interactions that have led to the rapid retreat of these and other Antarctic glaciers, helping them to better model the future impact on global sea level rise. (Credit: NASA)