A ring of planetary debris studded with moon-sized structures has been observed orbiting close to a white dwarf star, hinting at a nearby planet in the “habitable zone” where water and life could exist, according to a new study led by UCL researchers.
A ring of planetary debris studded with moon-sized structures has been observed orbiting close to a white dwarf star, hinting at a nearby planet in the “habitable zone” where water and life could exist, according to a new study led by UCL researchers.
White dwarfs are glowing embers of stars that have burned through all their hydrogen fuel. Nearly all stars, including the Sun, will eventually become white dwarfs, but very little is known about their planetary systems.
In the study, published in Monthly Notices of the Royal Astronomical Society, an international team of researchers measured light from a white dwarf in the Milky Way known as WD1054–226, using data from ground- and space-based telescopes.
To their surprise, they found pronounced dips in light corresponding to 65 evenly spaced clouds of planetary debris orbiting the star every 25 hours. The researchers concluded that the precise regularity of the transiting structures – dimming the star’s light every 23 minutes – suggests they are kept in such a precise arrangement by a nearby planet.
Read more at University College London
Image: An artist’s impression of the white dwarf star WD1054–226 orbited by clouds of planetary debris and a major planet in the habitable zone. (Credit: Mark A. Garlick / markgarlick.com)