What a Salamander Virus Can Tell Us About the Future of Biodiversity Amid a Changing Climate

Typography

A new project from two NAU scientists aims to predict the future—specifically, the future of different amphibian species in the face of an unpredictable environment.

A new project from two NAU scientists aims to predict the future—specifically, the future of different amphibian species in the face of an unpredictable environment.

Principal investigator Joseph Mihaljevic, an assistant professor in the School of Informatics, Computing, and Cyber Systems who studies the ecology of infectious diseases, and co-PI Jason Ladner, assistant professor in the Pathogen and Microbiome Institute who studies genomic epidemiology, received an $844,000 grant from the National Science Foundation to study ectotherms—a type of cold-blooded organism that includes amphibians, fish, reptiles and insects. Their project will create better, more predictive models to help scientists understand how climate change and infectious diseases will likely interact in the future to impact the health of wildlife species and predict how climate and disease affect these species, including those at risk of extinction.

Ectotherms play a variety of diverse roles in the ecosystem; amphibians eat many insects that are considered pests, and they are sources of food for snakes, fish, birds and other animals. Because they have life stages in the water and on land, they are a significant part of the food web for multiple ecosystems.

“Our ultimate goal is to better understand and better predict how climate change interacts with infectious diseases to affect whether some species might be at a higher or lower risk of extinction, particularly for species that are ectotherms,” Mihaljevic said. “For these types of species, whose body temperature is regulated by the environment, the climate determines how well they can cope with infectious disease, and the climate also impacts how well these species survive and reproduce in their habitats. We need better predictive models of when climate and disease are expected to have the largest combined impacts on these species in the future. This is important for conserving biodiversity, as well as for agriculture and aquaculture.”

Read more at: Northern Arizona University

Photo Credit: cortez via Pixabay