It’s the front line of climate change and could hold the key to predicting global sea level rise, but what goes on at the underwater face of Greenland’s glaciers is a mystery to science.
It’s the front line of climate change and could hold the key to predicting global sea level rise, but what goes on at the underwater face of Greenland’s glaciers is a mystery to science.
That could change in 2023 with a bold new mission led by researchers at The University of Texas at Austin that will explore three of Greenland’s glaciers with a submersible robot. The voyage will be the first time Greenland’s glaciers — which make up the world’s second-largest ice sheet — will be seen up close underwater.
Engineered to survive ice-covered seas by project partner the Woods Hole Oceanographic Institution (WHOI), the remotely operated vehicle Nereid Under Ice (NUI) will brave icebergs and riptides to approach within feet of the glaciers and return with data and samples from their underwater environment.
The scientists’ primary focus is not glacial ice, but the natural sand walls — or moraines — that buttress the glaciers and are thought to naturally, but precariously, stabilize the ice sheet. What they learn will reveal what’s shoring up glaciers across the entire Greenland ice sheet, which could lead to more accurate model projections for future sea level rise.
“The big uncertainty in Greenland’s contribution to sea level rise is how fast the ice sheet is going to lose mass,” said Ginny Catania, a professor at UT’s Jackson School of Geosciences who is leading the voyage. “We know how much sea level is stored in the ice sheet, we know climate is warming and changing the ice sheet, but what we don’t know is the rate at which these glaciers will contribute to sea level rise.”
Read more at: University of Texas at Austin
The glacier Kangerlussuup Sermia in Greenland, the focus of new underwater exploration led by UT Austin. (Photo Credit: Denis Felikson)